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A B S T R A C T   

CONTEXT: Farmers in the federal state of Mato Grosso contribute about one-third of national grain production in 
Brazil. Given their key role in providing food and feed for fast-growing world demand, major shocks on Mato 
Grosso’s farm holdings can lead to devastating consequences for vulnerable consumers and producers inside and 
outside Brazil. Research has shown that rising temperature and water stress threaten the agricultural produc
tivity of Mato Grosso’s rain-fed farm production systems. Failure of current production systems on existing 
croplands may also foster agricultural expansion and increase pressure on the remaining native forest. Balancing 
agricultural production and environmental protection is of particular concern in Mato Grosso because more than 
half of its territory is in the Amazon Rainforest biome. The tight schedule of field activities within double- 
cropping systems reduces farmers’ ability to adapt to climate change and manage shocks. The increasing un
certainty about climate change and price volatility further complicate farmers’ decision-making. 
OBJECTIVE: This study evaluates the impact of two climate change scenarios on the profitability of double- 
cropping systems, considering not only climate variability but also economic uncertainties faced at the farm 
level. 
METHODS: Our modeling system combines future climate projections with biophysical and bioeconomic models. 
We used high-performance computing with many compute nodes and large shared memory to account for the 
large heterogeneity of possible management options and farm-gate prices. 
RESULTS AND CONCLUSIONS: Simulation results indicate that farmers in Mato Grosso could be exposed to 
significantly lower economic returns, with a future gross margin reduction of 69% on average compared to 
current levels. Moreover, the number of profitable cropping alternatives could drop by 18% on average. Ac
cording to our simulations, climate impacts on gross margins are likely to differ in Mato Grosso, with the 
Southeast macro-region being the most affected and the South Central region the least. The simulation results 
also revealed a higher risk of losses during the second cropping season. Double-cropping systems with cotton 
were the most impacted by changing climatic conditions, and sunflower the least. 
SIGNIFICANCE: This study revealed that climate change might negatively affect double-cropping systems in the 
Southern Amazon due to reduced annual precipitation, a shortening of the rainy season, and shifts in the rainy 
season’s onset and cessation dates. Our bioeconomic simulations further suggest that farmers in Mato Grosso 
could lose one of their most significant comparative advantages, namely the possibility of harvesting two crops in 
one cropping season.   

1. Introduction 

Brazil is an important player for global food security (FAO, 2020) 
being a major producer and exporter of food and agricultural products. 

Accordingly, any shock to national agricultural production will likely 
affect worldwide supply and world market prices with potentially 
devastating consequences for vulnerable consumers and producers in
side and outside Brazil. Given the high share of unskilled labor in the 
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country’s agricultural sector (Ferreira-Filho and Horridge, 2016), such a 
shock would also adversely affect the wealth distribution in Brazil. 

Mato Grosso, covering an area of France and Germany combined, is 
Brazil’s most important federal state in terms of agricultural production 
(CONAB—Companhia Nacional de Abastecimento, 2020). Currently, it 
leads the national production of soybean, maize, cotton, and sunflower 
and holds the largest cattle herd in the country (CONAB—Companhia 
Nacional de Abastecimento, 2020; IBGE—Instituto Brasileiro de Geo
grafia e Estatística, 2020). Mato Grosso’s agricultural productivity and 
its rain-fed production systems are threatened by rising temperatures, a 
lengthening of the dry season and changes in the spatial and temporal 
distribution of precipitation due to global climate change (Arvor et al., 
2014; Boisier et al., 2015; Fu et al., 2013; Gil et al., 2018; Nobre et al., 
2016). 

Mato Grosso is also a hotspot of biodiversity with three biomes, the 
Cerrado with its savannah vegetation, the wetlands of Pantanal, and the 
Amazon Rainforest, which covers 54% of its territory. This unique 
biodiversity, however, is endangered through the ongoing conversion of 
native vegetation into pasture and cropland over the past years (Ferrante 
and Fearnside, 2019; IBGE, 2018; Schielein and Börner, 2018). Crop 
failure on existing farmland due to climate change might trigger further 
expansion of the agricultural frontier onto native forestland (Arvor et al., 
2014). 

Climate impact studies tend to use standard crop management 
practices, ignoring local farmer adaptations under price uncertainty 
(Berger and Troost, 2014; Holman et al., 2019). As argued by Lobell 
(2014), not fully capturing the benefits of farmer adaptation in crop 
management will systematically cause studies to overestimate the 
adverse effects of climate change. When facing lower crop yields and 
uncertain returns, farmers usually adapt their farm systems by changing 
crop mixes as well as input and output levels. Examples for this type of 
bioeconomic analysis incorporating farmer adaptation are Lehmann 
et al. (2013), who combined a crop growth model with an economic 
decision model to simulate winter wheat and maize production in 
Switzerland. Troost et al. (2015) and Troost and Berger (2015) applied 
agent-based simulation combined with crop-growth modeling for an 
agricultural region in southwest Germany, while Briner et al. (2012) 
simulated climate change impacts in a Swiss mountainous region using 
an aggregate mathematical programming model. Mittenzwei et al. 
(2017) applied a bioeconomic partial-equilibrium model to analyze the 
impact of climate change on Norway’s agricultural sector considering 
climate and policy uncertainty. 

Mato Grosso therefore deserves special attention when analyzing the 
future effects of climate change on Brazil’s agricultural production. 
Recently, Hampf et al. (2020) carried out a simulation study to evaluate 
future impacts of climate change on temperature, precipitation, and 
crop yields for typical production systems in Mato Grosso. The authors 
found that even with adaptation of sowing dates to changes in the onset 
of the rainy season, climate change is likely to decrease maize and cotton 
yields by 28% and 17%, respectively, due to less precipitation and 
higher temperatures. 

A second study by Brumatti et al. (2020) examined whether different 
adaptation measures (delay in sowing dates and adoption of short cycle 
cultivars) could maintain economic viability of standard double- 
cropping systems under future climate change, assuming fixed planted 
areas and fixed commodity prices. Depicting the heterogeneity of the 
farm production practices, however, is especially important in Mato 
Grosso, where the sowing window usually takes more than one month. 
Given the large size of farm holdings and their endowments of ma
chinery, labor, and capital, farmers need to split the sowing campaign 
over many weeks, employing different applications of fertilizers and 
pesticides. 

Addressing the knowledge gap regarding future double-cropping 
systems in Mato Grosso, this study’s objectives are: (i) to assess the 
impact of climate change on farm system profitability, (ii) to identify 
crop adaptation options for farmers in Mato Grosso, and (iii) support 

farmers and policy decision-makers with farm-level planning informa
tion. The methodological approach taken in this study integrates future 
climate scenarios with biophysical and bioeconomic simulation models: 
First, crop yields were simulated with the dynamic crop growth model 
MONICA in response to various management practices per crop. Second, 
we introduced sunflower as a novel crop that can potentially reduce the 
adverse impacts of climate change. Third, we carried out an in-depth 
investigation of projected climate change effects by analyzing precipi
tation patterns and the rainy season’s sub-regional duration. Fourth, we 
combined simulated crop yields with farm-gate prices and costs to 
calculate the gross margins of farm production systems. Fifth, by 
combining the simulated crop gross margins with sub-regional crop 
calendars and specific data of field operations, we estimated the 
resulting profitability of double-cropping systems. Sixth, we conducted 
extensive uncertainty analysis using high-performance computing to 
check the robustness of our simulations. 

2. Data and methods 

2.1. Study region and farm production systems 

Mato Grosso’s agricultural production takes place almost entirely in 
five of the seven macro-regions defined by the Mato Grosso Institute of 
Agricultural Economics (IMEA). Using the sampling procedure of IMEA 
(2010), we parameterized our simulation models for these five macro- 
regions (Mid-North, Northeast, South Central, Southeast, and West). 
The terrain in Mato Grosso is mainly flat, and the rainy season is usually 
well-defined, starting from September or October and extending into 
April or May. The prevalent farm systems consist of large-scale opera
tions employing double-cropping rotation of soybean followed by maize 
or cotton. The production of sunflower after soybean is a recent cropping 
alternative that started around a processing facility established by a 
group of farmers in Campo Novo dos Parecis in the western part of Mato 
Grosso (Oliveira de Sousa et al., 2018). 

2.2. Integrated modeling approach 

Our modeling system consists of two components: The first is the 
biophysical component that uses a process-based agroecosystem model 
to simulate crop yields and their responses to agro-climatic conditions 
and management practices. The second is a bioeconomic model that 
combines the climate scenarios and biophysical conditions with pro
duction requirements and market conditions to simulate the respective 
farm system’s profitability. Uncertainty at the farm-level is considered 
as well at this point. The result is farm-level planning information that 
can support farmer planning decisions. Fig. 1 provides an overview of 
model components and workflows.1 

2.2.1. Climate models 
Future climate projections for this study were derived from Böhner 

et al. (2014) and Hampf et al. (2020) who employed two different 
climate models: the Statistical Analogue Resampling scheme (STAR) and 
the Weather and Research Forecasting model (WRF). The former pro
jects drier and warmer conditions and more extreme events in the 
future, whereas the latter projects climate changes largely going in the 
same direction but with less severity from a farmer point of view. The 
climate variables simulated by STAR and WRF and used in this study are 
the maximum and minimum air temperature, effective sunshine hours, 
precipitation, and wind speed. The models provided climate projections 
for representative survey sites in the five IMEA macro-regions in Mato 

1 To facilitate double-blind review, model documentation including the R 
scripts, input and output files used in this study can be downloaded anony
mously from the MPMAS developer websitehttps://www.uni-hohenheim.de/ 
mas/software/BrazilClimateChangeSupplement.tar.gz 
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Grosso in a daily resolution up to the year 2040; the present paper uses 
the periods of 2020–24 and 2035–39 for comparison. Both climate 
models used the ECHAM5 A1B scenario from the Special Report on 
Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate 
Change (IPCC). That scenario assumes further economic growth, global 
population peaking in mid-century, and rapid introduction of new and 
more efficient technologies (IPCC—Intergovernmental Panel on Climate 
Change, 2007). 

Beyond rising temperatures and altered precipitation patterns, 
timing-related climatic factors can also affect crop yield. For example, in 
Mato Grosso’s widely used double-cropping systems, delays of the rainy 
season’s onset or its early cessation can directly impact farm net pro
duction. We therefore estimated the onset and cessation of the rainy 
season following Dunning et al. (2016), who proposed a two-step 
approach for locations such as Mato Grosso with a rainy season span
ning over two calendar years. The first step consisted of calculating the 
climatological cumulative daily rainfall anomaly C on day d with the 
following equation: 

C(d) =
∑d

i=1
Qi − Q  

where Qi is the climatological mean rainfall for each individual day of 
the calendar year (calculated over a period of several years), Q is the 
climatological daily mean rainfall, and i ranges from day 1 (i.e., 1st of 
January) until day d. The beginning of the climatological water season ds 
is marked by the day of minimum C, and the end of the season de is 
marked by the day of maximum C. In a second step, we estimated the 
specific onset and cessation dates for each rainy season using the pre
vious step’s estimates as a reference. The daily cumulative rainfall 
anomaly A is calculated for each day in each year from ds – 50 to de + 50 
using the following equation: 

A(d) =
∑d

j=ds − 50
Rj − Q  

where Rj is the rainfall on day j. The day after the minimum daily cu
mulative rainfall anomaly is defined as the onset date of the yearly rainy 

season, and the day after the maximum is defined as its cessation date. 

2.2.2. Biophysical model component 
Crop yield simulations in the biophysical component of our modeling 

system were carried out with the Model for Nitrogen and Carbon in 
Agroecosystems (MONICA) (Nendel et al., 2011). With MONICA, we 
simulated the response of soybean, maize, cotton and sunflower yields to 
different sowing dates, nitrogen fertilization rates, soybean maturity 
groups, soil characteristics, and climatic conditions. MONICA has 
already been used in Mato Grosso to simulate green financing policies 
(Carauta et al., 2017), sustainable measures for yield gap closure 
(Hampf et al., 2018), and the impact of climate change and technolog
ical development on crop yields (Hampf et al., 2020). For a detailed 
description of MONICA and its specification, see Nendel et al. (2011). 

MONICA was parameterized in this study for five survey sites that are 
representative for their macro-regions following the classification of 
IMEA (2010). We accounted for four different soil types (acrisol, are
nosol, ferrasol, plinthosol) and selected soil properties (e.g., silt, sand, 
and clay content, C/N ratio, bulk density) that were taken from the soil 
database of Cooper et al. (2005). The distribution of soil types for each 
macro-region was retrieved from the soil maps published by Mato 
Grosso’s State Secretary of Planning (SEPLAN—Secretaria de Estado de 
Planejamento e Coordenação Geral de Mato Grosso, 2011). 

The agro-climatic output variables of the climate projections from 
2020 to 2040 generated with STAR and WRF—explained in section 
2.2.1—were used as input for MONICA to simulate crop yields in a daily 
resolution for each macro-region and climate projection. 

We considered an extended number of crop management options for 
this study, consisting of multiple sowing dates, nitrogen (N) fertilization 
rates, and crop maturing cycles. As shown in Table 1, we considered four 
sowing dates and five N fertilization rates for maize; four sowing dates 
and three different maturity groups for soybean; five sowing dates and 
seven N fertilization rates for cotton; and five sowing dates and five N 
fertilization rates for sunflower. Table 1 summarizes the crop-related 
variables used in our simulations. Crop yields were simulated within a 
double-cropping rotation scheme, composed of soybean or cover crop 
(sorghum) followed by maize, cotton, sunflower, or cover crop. In total, 
we simulated 960 combinations of sowing dates, fertilization rates, 

Fig. 1. Flow chart of our modeling system.  
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maturing cycles, and crop rotations for each site, soil type and cropping 
season. 

2.2.3. Bioeconomic model component 
Crop management practices adapted to the local conditions of Mato 

Grosso involve the use of distinct seed varieties and agricultural inputs. 
For instance, when farmers use crop varieties with longer maturity cy
cles, they typically apply more pesticides. Moreover, each agricultural 
practice requires different field operations, and each field operation has 
its own timing of input, labor, and machinery demands. To capture this 
heterogeneity at the farm system level, we created location-specific crop 
calendars in a weekly resolution for each agricultural practice and then 
combined this information with site-specific data on machinery and 
labor demands as well as on the remaining, other agricultural inputs. 

We then programmed our bioeconomic model component using the 
R Software (R Core Team, 2020) to compute the total utilized amounts of 
the various production factors required to produce a crop under a spe
cific management option. In addition to the various crop management 
options that were simulated in the biophysical model component 
MONICA, we also considered specific crop seed varieties. This level of 
detail was necessary because different seed varieties demand different 
pesticides and application quantities with noticeable implications for 
farm-level production costs. Moreover, our bioeconomic simulations 
had to cover region-specific technical and economic constraints such as 
different availability of machinery services, input/selling prices as well 
as transportation costs. 

Our region-specific management schemes built on the farm survey of 
IMEA (2016) and were adapted to our simulation experiments with the 
assistance of local experts from the Brazilian Agricultural Research 
Corporation (EMBRAPA) and the Federal Institute of Mato Grosso 
(IFMT). Altogether, our production cost estimation accounted for 165 
agricultural inputs (fertilizers, seeds, herbicides, insecticides, fungi
cides, diesel), 13 field operations (soil preparation and pH correction, 
sowing, spraying, harvesting), and three post-harvest activities (trans
porting, processing and storing). 

We used crop gross margins as an indicator of farm system profit
ability in Mato Grosso. Gross margins are defined as sales revenue minus 
direct production costs such as expenses for machinery usage, labor 
employment and input acquisition, as well as post-harvest costs and 
direct taxes related to selling the produce. The sales revenue was 
calculated for each crop product p associated with a specific crop 
management option, denoted with the variable θ. Cotton was the only 
crop that generates two products, cotton lint and cotton seed. The sales 
revenue of a specific crop management practice θ, in macro-region r, 
with soil type s and in year y was computed as: 

Revenueθ,r,s,y =
∑P

p=1
Yieldθ,p,r,s,y ×Pricep,r,y 

Machinery costs were estimated using the official documentation of 
the Brazilian National Food Supply Company—CONAB (CON
AB—Companhia Nacional de Abastecimento, 2010). We included 16 
machine types in our model simulations (various tractors, harvesters, 

loaders, distributors of fertilizer and pesticides, sprayers, and plows). 
The machinery costs comprise the expenses associated with the use of 
machinery (such as fuel, filters, and lubricants), plus maintenance and 
insurance/damage. The sum of these expenses is the resulting operating 
cost of using machinery and is estimated in Brazilian Reais (R$) per 
hour. This is then multiplied by the amount of machinery used (in 
hours), which is estimated on a weekly basis (w) and depended on the 
management option chosen and the macro-region. Accordingly, the 
machinery operating cost of a crop management option θ in macro- 
region r was estimated as: 

MachineryOperatingCostθ,r =
∑M

m=1

×
∑W

w=1
machineryUseθ,m,r × operatingCostm,hp,ac  

where m is the specific machine used, hp is its horsepower, and ac its 
acquisition cost. 

The cost of fuel per hour of use is a function of the machinery 
horsepower and a diesel consumption factor, which was estimated as 
12% (CONAB—Companhia Nacional de Abastecimento, 2010): 

FuelCostm = horsePower × dieselFactor× dieselPrice 

In addition, CONAB (2010) estimated the cost of filters and lubri
cants as 10% of the fuel cost. Maintenance cost was estimated as a 
fraction of the acquisition cost, which depends on the machinery type. 
Machinery with horsepower greater than zero has a maintenance factor 
of 1%. In comparison, those without horsepower (such as implements 
that must be towed by or mounted on the tractor) have a maintenance 
factor of 0.8%. The maintenance cost was expressed per hour by 
dividing it by the total lifetime in hours, which was also taken from 
CONAB (2010). Cost for insurance and machinery damage was related to 
the acquisition cost, which was multiplied by a factor of 0.375%, and 
then divided by the total lifetime. 

The labor cost was estimated based on the time requirement of each 
crop management option in the various macro-regions. Like machinery, 
the labor requirements (number of hours needed) was estimated on a 
weekly basis considering the field operations within the crop calendar. 
The resulting labor cost of a crop management practice θ in the macro- 
region r was computed as: 

LaborCostθ,l,r =
∑W

w=1
laborRequirementθ,l,r ×(wagel + taxes and contributions)

where l is the labor type (such as manager, driver, or field assistant). 
Wages for each labor type were taken from the IMEA database and then 
converted to hourly figures (IMEA—Instituto Mato-Grossense de Econ
omia Agropecuária, 2016).The expenses related to payroll taxes and 
contributions were estimated according to the current legislation, which 
amount to approximately 48% of the wages paid. 

The total amounts of remaining (other than machinery and labor) 
agricultural inputs i used in each crop production system were estimated 
together with local experts based on detailed data from the production 
cost survey of IMEA (2016). Input prices vary per macro-region and 
were also taken from IMEA’s online database. The calculation of input 
costs was connected to the crop calendar and computed per crop man
agement option and macro-region as: 

OtherInputCostθ,r =
∑I

i=1

∑W

w=1
inputRequirementθ,i,r,w × inputPricei,r 

We considered four different types of cost that farmers in Mato 
Grosso incur after harvest: the cost of transporting, processing, and 
storing the crops, plus the cost of technical assistance (extension), which 
were all taken from IMEA (2016) for the various macro-regions. 

Table 1 
Characteristics of farm production systems analyzed in our simulations.  

Crop Sowing dates Cycle 
(days) 

Nitrogen fertilization 
(kg ha− 1) 

Cotton 15 Dec, 30 Dec, 15 Jan, 30 
Jan, 15 Feb 

172 0, 90, 140, 185, 230, 
280, 450 

Maize 20 Jan, 06 Feb, 20 Feb, 06 
Mar 

140 0, 40, 80, 120, 160 

Soybean 01 Oct, 15 Oct, 01 Nov, 15 
Nov 

95, 110, 
128 

– 

Sunflower 01 Feb, 15 Feb, 01 Mar, 15 
Mar, 01 Apr 

110 0, 30, 60, 90, 120  
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Processing cost was calculated as a percentage of total production cost. 
Storage cost was related to total production, but also on how long (in 
months) the product was kept in the storage facility (which varied per 
crop product and macro-region). Transportation cost was estimated as 
the distance (in kilometers) from the farm gate to the next processing 
facility, multiplied by the transportation fee and the amount produced. 
In contrast, the cost for technical assistance was calculated as a share of 
the crop revenue. 

Finally, depending on the crops produced, farmers have to pay 
different types of taxes that are shown in Table 2 (Käfer et al., 2014). 
Some of these taxes had to be calculated as a percentage of the sales 
revenue, while others depended on the standard fiscal unit, or UPF (in 
Portuguese, Unidade Padrão Fiscal). The UPF value is determined by the 
federal state on a monthly basis. 

2.3. Uncertainty analysis 

Our simulation experiments were subjected to extensive model un
certainty analysis. This was necessary for two reasons: First, to produce 
robust and truly representative results, which are global distributions 
over the model parameter space (and not only point estimates). Second, 
to deal with the potential influence of error and uncertainty intrinsically 
associated with simulation models. Complex farm system models rely on 
many parameters, and uncertainty analysis assures that the modeling 
results are not significantly determined by the modeler’s choice of ad 
hoc specific values (Berger and Troost, 2014). 

A common challenge with uncertainty analysis is the considerable 
amount of computing power required (Troost and Berger, 2015). We 
addressed this issue by combining high-performance computing with an 
efficient experimental design. To reduce the number of necessary model 
evaluations, we used the Sobol’ sequence (Tarantola et al., 2012). This 
sampling technique named after a Russian mathematician seeks to 
sample the parameter space efficiently by distributing the parameters’ 
points evenly, thus offering faster convergence and stable estimates 
(Berger et al., 2017). Accordingly, we repeated each gross margin esti
mation over 100 uncertainty scenarios or design points. Each time, new 
values of the uncertain input variables were drawn from their respective 
distributions. In total, we identified 14 uncertainty parameters 
(described in Table 3) that can be grouped into four categories: labor 
requirements, crop yields, input, and selling prices. Since local prices 
and yields in Mato Grosso are highly correlated (due to climate condi
tions, supply and demand, and dependence on the US dollar exchange 
rate), we did not sample crop yields and prices independently. To pre
serve these observed correlations, we instead sampled prices and yields 
for a simulation period from a complete set of local market data 
observed in Mato Grosso (available for 2012 to 2017). The test for model 
convergence showed that the mean and 5th and 95th percentile of 
simulated gross margins rapidly converge to stable values, indicating 
that 100 repetitions were sufficient to generate robust results in our 
simulation study (Fig. 2). 

The full experimental design for our study comprised 65 million data 
points. Each data point corresponded to the simulated gross margin of 
one double-cropping system under a unique combination of crop man
agement options, Sobol’s sequence design points, soil types, region- 
specific climatic conditions, future climate scenarios, and the period of 
simulation. 

2.4. Model validation 

Following the approach of Berger and Troost (2014), we conducted 
many structured verification tests during the modeling stage to check 
whether our modeling system was free of programming errors and truly 
performed as intended. In addition, we arranged face validation of 
model and simulation results with local experts and professionals at key 
institutions in Mato Grosso, such as EMBRAPA, IMEA, IFMT, and the 
Federal University of Mato Grosso (UFMT). 

Furthermore, we carried out model validation tests to evaluate how 
well simulated values of yields and gross margins matched with corre
sponding observed values. To that end, we simulated crop yields using 
observed climate data from the Brazilian National Institute of Meteo
rology (INMET) for five different locations in Mato Grosso. Based on 
these, we simulated the gross margins of typical production systems and 
compared them with those estimated by IMEA in their production cost 
survey (IMEA—Instituto Mato-Grossense de Economia Agropecuária, 
2016). Since gross margins are reported only for the most typical pro
duction systems of each macro-region in the IMEA survey (and are not 
estimated by the Brazilian Institute of Geography and Statistics (IBGE)), 
only 13 observed data-points were available for validation: five for 
soybean and maize, and three for cotton (cotton was not cultivated in 
the South Central and Northeast regions). 

Fig. 3 summarizes the validation tests using the performance in
dicators suggested by Berger et al. (2017). We achieved a Nash-Sutcliffe 
(NSE) model efficiency of 0.65, where unity means a perfect match, zero 
means that model prediction is as good as the mean of observed data, 
and negative values indicate that the mean is a better predictor than the 
model. Our current analysis achieved a standardized absolute error 
(ESAE) of 0.67 as a goodness-of-fit, compared to 0.47 in Carauta et al. 
(2017), who simulated farmer land use in Mato Grosso with a bio
economic model. Because our current model simulates gross margins 
(that are independent of each other), compared to the categorical land 
uses of the aforementioned authors, we chose to use NSE over ESAE as a 
performance evaluation method in this study; the latter is provided only 
for comparison. For details about the validation of the biophysical model 
component, see the supplementary material. 

3. Results 

3.1. Changes in duration of the rainy season and precipitation patterns 

Fig. 4 presents the estimated onset and cessation dates in the two 
comparison periods (2020–24 and 2035–39) for two climate scenarios 
and five macro-regions. The variation in both the onset and cessation 
dates was higher for the STAR scenario in 2035–39 compared to 

Table 2 
Selling taxes.  

Tax Crop Calculation 

FUNRURAL Cotton, Maize, Soybean, and Sunflower Tax x Price x Yield 
FETHAB Soybean Tax x UPF x Yield 
FACS Soybean Tax x UPF x Yield 
IMA-MT Cotton Tax x UPF x Yield  

Table 3 
Parameter variation in the Sobol’ sample.  

Variable Distribution or sampling method Min Max 

Soybean price RS 0.96 1.15 
Maize price RS 0.85 1.19 
Cotton price RS 0.91 1.04 
Sunflower price RS 0.98 1.05 
Fertilizers price RS 0.99 1.07 
Herbicides price RS 0.92 1.04 
Fungicides price RS 0.75 1.09 
Insecticides price RS 0.99 1.05 
Seed price RS 0.95 1.17 
Soybean yield RS 0.97 1.03 
Maize yield RS 0.91 1.13 
Cotton yield RS 0.94 1.05 
Sunflower yield RS 0.96 1.09 
Labor requirement Triangle 0.84 1.18 

Note: “RS” means randomly sampled from vector of local market prices and 
yields. 
The modus from triangle distributions as well as RS variables equal to unity. 
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2020–24. Conversely, for the WRF climate scenario, the variation was 
lower in the onset but higher in the cessation dates in the later period. 
Comparing the rainy season’s median duration (number of days between 
the onset and cessation dates) between the two periods shows a reduced 
span in almost all regions (except for the South Central region in the 
WRF scenario). The median decrease was 53 days in the STAR scenario, 

5 days in the WRF scenario. 
Fig. 5 shows the simulated precipitation patterns in the STAR and 

WRF scenarios as daily average precipitation for both periods. Daily 
precipitation declined relatively sharply in the STAR scenario but 
showed a slight increase in the WRF scenario. 

Fig. 2. Convergence of Mato Grosso’s weighted gross margins for 2035–39 over sample points of the Sobol’ sequence.  

Fig. 3. Model validation at the farm level for typical agricultural systems. The dashed line indicates a regression line between the simulated and observed gross 
margins. Coef. = coefficient of the regression line with no constant term. ESAE = standardized absolute errors. 

M. Carauta et al.                                                                                                                                                                                                                               



Agricultural Systems 190 (2021) 103104

7

3.2. Impact of climate change on crop yields 

Fig. 6 displays the simulated yields of cotton, maize, soybean, and 
sunflower in 2020–24 and 2035–39 for the two climate scenarios. The 
boxplots present the full distribution of crop yield changes over many 
crop management options (as described in section 2.2.2), whereas the 
triangles reflect the median crop yield change resulting from standard 
management options. Thus, the latter reflect the climate change impact 

without farmer adaptation, the former the potential effects with farmer 
adaptation. The percentage change in the median results is negative for 
all crops in the STAR scenario and almost all crops in WRF, except for 
soybean. 

3.3. Impact of climate change on farm system profitability 

The simulated gross margins—in Brazilian Reais (BRL) per 

Fig. 4. Simulated rainy season’s onset and cessation dates.  

Fig. 5. Simulated average daily precipitation in Mato Grosso, Brazil.  
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hectare—of the five major double-cropping systems in Mato Grosso for 
two climate projections are depicted in Fig. 7. Each panel represents the 
full distribution of gross margins over all Sobol’ design points (or model 
repetitions) for 2020–24 and 2035–2039. Overall, gross margins were 
lower in the STAR than in the WRF scenario. The gross margins were 
significantly lower in the 2035–39 period in STAR, whereas only slight 
changes were evident in the WRF scenario. The agricultural systems 
with cotton experienced more occurrences of negative gross margins in 
both periods and scenarios. 

Fig. 8 compares the change in simulated gross margins of all rotation 
schemes and management practices in each macro-region and climate 
scenario. As in Fig. 6, the boxplots display the full distribution of gross 
margin changes, the triangles the median gross margin change resulting 
from current management options without farmer adaptation. The STAR 
scenario led to the most negative impacts in terms of gross margin, with 
Southeast and West being the most affected regions in STAR. In WRF, 
Mid-North was affected the most severely. Under STAR climate pro
jections, the median gross margin decreased by 1670 BRL ha− 1, while in 
the WRF scenario it increased by 58 BRL ha− 1. The figure further shows 
that the simulated gross margins occasionally increased in all macro- 
regions under the WRF scenario. 

In the STAR scenario, the double-cropping systems most negatively 
affected by climate change were those with early soybean sowing dates 
and late maize, cotton, and sunflower sowing dates. In the WRF sce
nario, early soybean sowing dates also presented gross margin re
ductions; in contrast, the gross margin increased in the combination of 
soybean sown on October 15 and November 1 with late sowing of maize 
or sunflower. 

3.4. Reduced number of profitable management practices 

In Fig. 9, we evaluated whether climate change might reduce farmer 
flexibility when planning their field operations and impair their ability 
to adapt on-farm crop management. Each bar in Fig. 9 depicts the 
resulting number of profitable management practices available in each 

climate projection period. The number of profitable alternatives was 
calculated by subtracting the number of cropping alternatives with 
negative gross margins from the number of cropping activities with 
positive values. On average, the number of profitable alternatives 
decreased by 36% in the STAR scenario, by 3% in the WRF scenario. 

3.5. Upscaled impact of climate change on farm-level profitability 

Fig. 10 evaluates the potential impact of climate change on the entire 
federal state by calculating Mato Grosso’s total crop farm gross margin. 
The weighted gross margin was calculated using the simulated agent 
crop land uses in Carauta (2019) as a proxy for future climate impacts 
without farmer adaptation behavior. Each panel in Fig. 10 presents the 
average weighted total gross margin for crop farms in Mato Grosso for a 
climate scenario in two periods. Both scenarios showed a negative 
impact in 2035–39 compared to 2020–24, but the STAR scenario yielded 
a stronger reduction in gross margin. 

An indication of the mean expected climate change impact on crop 
farm gross margins can be derived by averaging the simulation results 
from both climate scenarios. Accordingly, the mean expected climate 
impact ranged between − 543 and  -− 436 BRL ha− 1, yielding an esti
mated average of − 474. For comparison, the simulated average gross 
margin based on weather data from 2000 to 2015 yielded an estimate of 
611 BRL ha− 1. 

4. Discussion 

This study employed bioeconomic simulation to assess ex ante the 
farm-level impacts of climate change in Mato Grosso, considering sea
sonal land-use trade-offs within double-cropping production systems. 
We focused on simulating the future profitability of agricultural systems 
and estimated the number of economically viable crop adaptation op
tions for farmers in Mato Grosso. 

Fig. 6. Percentage change in simulated crop yields between 2020–24 and 2035–2039.  
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4.1. Climate change impact on precipitation and duration of the rainy 
season 

The analysis of future precipitation patterns in Mato Grosso revealed 
many interesting insights when comparing the regional climate pro
jections of STAR and WRF. For the period 2035–39 vis-à-vis the 
benchmark 2020–24, STAR showed a reduction in precipitation along 
with a shortening of the rainy season in almost all macro-regions. The 
rainy season started almost one month later in November and already 
ended in late March. STAR also yielded a less distinctive transition be
tween the rainy and dry season, leading to significantly more precipi
tation in May and June (Fig. 5). This finding is in line with Ronchail et al. 
(2002) and Nobre et al. (2016), who associate this anomaly in precipi
tation with an increasing occurrence of the El Nino Southern Oscillation 
(ENSO). In the WRF climate scenario, the rainy season was shorter in 
four of the five macro-regions. In most of the cases, the cessation was 
anticipated to be late March or early April. 

The shorter rainy season and changes in its precipitation patterns as 
highlighted in Figs. 4 and 5 have important implications for double- 
cropping systems here. These results are consistent with Hampf et al. 
(2020) and suggest that, in Mato Grosso, farmers could lose one of their 
most significant comparative advantages, namely the possibility of 
harvesting two crops in one cropping season. Without double-cropping, 
farmers would likely grow soybean with longer maturing cycles and late 

sowing dates, which would then yield the highest possible gross margin 
for single crops. The overall farm system gross margin, however, would 
be much lower than in current double-cropping systems, supporting the 
findings of Brumatti et al. (2020). 

The potential shifts of the rainy season’s onset and cessation dates 
highlighted in Fig. 4 provide crucial insights for farmers in their strategic 
development planning (scale of investment needed to cover specific 
machinery and labor demands). These results can guide future research 
regarding the most robust and profitable sowing dates and crop rota
tions in Mato Grosso. Given that the farmer’s choice of a sowing date in a 
double-cropping system is intrinsically related to labor and machinery 
availability at the farm level, these constraints need to be captured in 
future investigations. For example, agent-based bioeconomic models 
such as in Carauta et al. (2017), could provide insights into the resulting 
influences on land-use change. 

4.2. Direct impact on crop yields 

The direct climate impact on crop yields was more severe in the 
STAR than in WRF scenario, corroborating the findings of Hampf et al. 
(2020). Interestingly—apart from soybean in WRF—climate change has 
the most severe negative impact on crop yields in the Southeast region. 
This finding suggests serious consequences for food security and eco
nomic development because the Southeast region is the second-largest 

Fig. 7. Simulated gross margin of different double-cropping systems in Mato Grosso (in Brazilian Reais per hectare). Reference exchange rate of R$ 3.91/US$.  
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producer of soybean, maize, and cotton in Mato Grosso. Moreover, those 
management options of double-cropping systems which are already the 
least favorable in the period 2020–24 (namely, soybean early sowing 
dates and shorter maturing varieties) proved to be the most severely 
affected by climate change, making these strategies even less suitable. 
The result is a narrower decision space for agricultural producers. 

Sunflower cropping systems with late sowing dates (March 15 and April 
1), in contrast, were the least impacted by climate change, highlighting 
this crop’s potential use as a farmer adaptation strategy in Mato Grosso. 

Fig. 8. Simulated change in gross margin (in Brazilian Reais per hectare) at sub-regional levels between 2020–24 and 2035–2039.  

Fig. 9. Simulated net change in the number of profitable double-cropping management practices between 2020–24 and 2035–2039.  
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4.3. Impact on crop farmer gross margins 

As expected, the farm gross margins of double-cropping systems 
were negatively affected in our simulations in both climate projections. 
Nonetheless, the potential impact was more substantial in the STAR 
versus WRF scenario. Despite a few occurrences of a somewhat positive 
impact of climate change in WRF, the negative impacts on farm gross 
margins prevailed. Our results are therefore in accordance with Bru
matti et al. (2020) who found that even with adaptation of sowing dates 
and adoption of short cycle cultivars, gross revenues are likely to 
decrease in a scenario with high deforestation rates. This would make 
double-cropping systems economically unfeasible. 

Generally, double-cropping systems with cotton were the most 
negatively affected in our simulations. Traditionally seen as the most 
profitable system in Mato Grosso, cotton cultivation showed low prof
itability under both climate change scenarios, with high volatility and 
low returns (Fig. A. 1). Accordingly, the future introduction of drought- 
resistant alternatives or short maturing cultivars might compensate for 
potential decreases in cotton profitability. This would help prevent 
farmers from shifting towards less dry agricultural areas (which would 
likely mean further deforestation and land-use conversion). 

In contrast, the novel sunflower rotation system proved to be the 
most resilient alternative when compared to cotton and maize. We 
therefore recommend further studies evaluating adequate phytosanitary 

management, weed control, and cultivars adapted to Mato Grosso’s 
diverse local environments. This could help farmers make better de
cisions on a crop that still has low adoption rates due to high uncertainty 
and transaction costs (Oliveira de Sousa et al., 2018). Further studies 
focusing on evaluating its potential diffusion in alternative scenarios 
with improved infrastructure, such as additional processing facilities, 
could help policymakers improve the stability and efficiency of sun
flower agri-food chains. 

The most relevant finding in our study was that changing climatic 
conditions might compromise the profitability of double-cropping sys
tems in Mato Grosso in the near future. Our results show that the 
weighted overall gross margin could decline by 69% on average. In 
comparison, soybean monocropping was the least affected by changing 
climate conditions. Altogether, our simulation results suggest a future 
backward trend from double-cropping to monocropping systems. This 
could have devastating consequences for farmers and the local economy 
because large-scale farms are highly mechanized and rely on double- 
cropping systems to cover their high production costs and levels of 
debt and obligations (de Melo and Resende Filho, 2017). Finally, a shift 
back to monocropping could also aggravate the environmental impacts 
of agriculture (e.g., erosion, soil degradation and deforestation) and 
could have a negative effect on the water cycle (Spera, 2017). 

Our simulation experiments further revealed that some macro- 
regions in Mato Grosso are more vulnerable to climate change than 

Fig. 10. Simulated averaged weighted gross margin for Mato Grosso.  
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others. Practically all crop production systems in STAR experienced an 
adverse outcome in the second climate comparison period 2035–39. The 
macro-region most affected in the WRF scenario was the Mid-North due 
to a combined effect of a shorter rainy season and less yearly 
precipitation. 

This calls for more research to explore the possibilities of introducing 
new seed technologies and alternative management schemes in the 
exposed areas. The goal is to avoid a decline in production as well as to 
fend off a further shift of the western frontier of agricultural land-use 
into the rainforest and to subsequently prevent increasing deforesta
tion rates. 

4.4. Model limitations 

Unfortunately, the new set of climate scenarios 
(IPCC—Intergovernmental Panel on Climate Change, 2014) has been 
released too late for inclusion into our research as part of the German- 
Brazilian Carbiocial project (Gerold et al., 2018). Nonetheless, we per
formed a comprehensive uncertainty analysis to ensure robust simula
tion results and examined a wide range of future climate change 
projections by using two contrasting climate scenarios in our model 
ensemble. Our findings can be interpreted as a first estimation of climate 
change’s potential impacts, and we, therefore, recommend further 
studies on this pressing topic. 

5. Conclusion 

The future profitability of double-cropping systems in Mato Grosso 
may face many threats under changing climate conditions due to 
reduced annual precipitation, a shortening of the rainy season, and shifts 
in the rainy season’s onset and cessation dates. Our simulation experi
ments further revealed that certain macro-regions in the federal state are 
probably more sensitive than others to climate change, underlining that 
these hazards might not be evenly distributed. This information can 
support the development of policy measures that target the in
terventions to each macro-region’s specific needs. 

Our investigation shows that climate change might severely dampen 
the profitability of double-cropping systems in Mato Grosso, mostly 
because of the shorter rainy season. This would lead to a future shift 
towards monocropping systems, creating additional environmental 
pressures on native vegetation and stresses on food production and food 
security. 

Our bioeconomic simulations suggest that sunflower is a potential 
adaptation option, exhibiting resilience against changing climate 
compared to current farm systems with cotton and maize. Given the 
initial development stage of the sunflower supply chain in Mato Grosso, 
we recommend further investigations on the factors hindering its 
adoption at both farm and state levels (for example, broader and 
extended field trials, possible land-use trade-offs, and regional process
ing constraints). 

Examining the simulation results under two different assumptions 
regarding farmer behavior (with and without farmer adaptation of crop 
management) demonstrated that adapted management options might 
help farmers buffer some of the adverse effects of climate change in Mato 
Grosso. Importantly, however, some of the simulated crop management 
alternatives will not be feasible for all farmers because their imple
mentation depends on many other farm-level characteristics not 
considered in this study (e.g., machinery endowments, cash reserves, 
and exchange of land on land markets). Therefore, future research 
should consider farm agent characteristics and interactions and also 
investigate the role of technology diffusion on climate change 
adaptation. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.agsy.2021.103104. 
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Mittenzwei, K., Persson, T., Höglind, M., Kværnø, S., 2017. Combined effects of climate 
change and policy uncertainty on the agricultural sector in Norway. Agric. Syst. 153, 
118–126. https://doi.org/10.1016/j.agsy.2017.01.016. 

Nendel, C., Berg, M., Kersebaum, K.C., Mirschel, W., Specka, X., Wegehenkel, M., 
Wenkel, K.O., Wieland, R., 2011. The MONICA model: testing predictability for crop 
growth, soil moisture and nitrogen dynamics. Ecol. Model. 222 (9), 1614–1625. 
https://doi.org/10.1016/j.ecolmodel.2011.02.018. 

Nobre, C.A., Sampaio, G., Borma, L.S., Castilla-Rubio, J.C., Silva, J.S., Cardoso, M., 2016. 
Land-use and climate change risks in the Amazon and the need of a novel sustainable 
development paradigm. Proc. Natl. Acad. Sci. U. S. A. 113 (39), 10759–10768. 
https://doi.org/10.1073/pnas.1605516113. 

Oliveira de Sousa, L., Dias Paes Ferreira, M., Mergenthaler, M., 2018. Agri-food chain 
establishment as a means to increase sustainability in food systems: lessons from 
sunflower in Brazil. Sustainability 10 (7), 2215. 

R Core Team, 2020. R: A Language and Environment for Statistical Computing. Vienna, 
Austria. https://www.R-project.org/. 

Ronchail, J., Cochonneau, G., Molinier, M., Guyot, J.-L., de Miranda Chaves, A.G., 
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